Message formats for the pedestrian August 7, 1992

This note introduces the classic protocol message formats in use by the local

control stations used at Fermilab in the D0 and Linac control systems. The messages can be used on token ring with SAP=\$18, or they can be used from any

IP node targetting UDP port# 6800 (decimal) for requests. For more extensive

details, consult other documents.

Robert Goodwin goodwin@fnal.gov

There are only a few basic classic protocol message type numbers as follows:

- 0. Data reply
- 1. (n.u.)
- 2. Data request
- 3. Data setting
- 4. Analog alarm
- 5. Digital alarm
- 6. Comment alarm

The following message formats are presented as arrays of 2-byte words in which the big endian byte order is assumed (hi byte first). Hex data is used when possible in the format pictures. The message type number is found in the most significant 4 bits of the third word.

More than one message can be placed into a single UDP datagram. The message size word in that case delineates each message.

The request message type is described before the reply.

-	+	-		
	message size	message size (including this word) in bytes		
	dest node#	node# to which this message sent.		
	2 s list#	\$20= non-server. \$28= server. list# identifies request.		
	period #ltyp	period in 15Hz cycles (0=one-shot), #listypes.		
+ + + + +	il	ident length in bytes (4 bits), #idents (12 bits)		
	ltyp# 0 0 #bytes req'd			
	ident node#			
	ident index#	- repeat for #idents 		
_		F /		

The example shown is for the case of one listype, one ident, ident length=4. There are about 80 listypes defined. The meaning is roughly the kind of data

that is desired. It implies a certain ident type and therefore ident length. Simple examples of listypes are:

listype#	kind of data requested	ident type	
0	analog channel reading	channel#	
1	analog channel setting	channel#	
2	analog channel nominal value	channel#	
3	analog channel tolerance value	channel#	
4	analog channel alarm flags, count		channel#
20	memory data by bytes	address	
21	digital bit I/O	bit#	
25	digital byte I/O	byte#	
29	memory data by words	address	
40	analog reading in engineering ur	channel#	
41	analog setting in engineering uni	channel#	

The meaning of the request is that listype data is requested for all listypes using all idents given. For each listype and #bytes, generate response data for each ident. The ident array is processed in sequence for each listype. Thus a request is in general a matrix request. Therefore requests cannot be combined if one needs separate arrays of idents for each listype. In that case, more than one request should be made, each using a diffrent list#. If one wants 1 Hz readings and settings for channels 101,102,108 in node

then the request would be as follows:

```
001E size=30
0576 dest node
2033 non-server request using list#=$33
0F02 1 Hz, 2 listypes
4003 4-byte idents, 3 idents
0000 reading
0002 2 bytes
0100 setting
0002 2 bytes
target node/chan list
0101
0576
0102
0576
0108
```

In this non-server case, the dest node of the request message must match the

target node# in each ident. In the server case, the request will be sent (as a

non-server message) by the dest node to the target node, or in the case of more than one node in the list of idents that is not the same as the dest node, to a group (multicast) destination address to reach all local stations. In the group case, only stations which match at least one of the nodes in the list of idents will respond at all, including only their own contribution. The separate contributions are arranged in original request order and returned

in a single reply. For this to work best the stations should run synchronized.

Classic Protocol
Message type 0. Data Reply

p 4

This example shows the case of 4 data bytes returned. The dest node will be the node# of the requester node. For requesters that are not local stations there is no "node#", so this word will be zero. There is a single status word for the entire reply.

For the specific example given for the request message example, the following might be a reply:

```
0014 message size
0000 (zero dest node# for non-local station requester)
0033 reply type, non-server, list#=$33.
0000 status=0 (no errors)
1234 reading for chan 101
151D reading for chan 102
4866 reading for chan 108
1230 setting for chan 101
1508 setting for chan 102
4882 setting for chan 108
```

Classic Protocol p 5 Message type 3. Data setting

One setting message targets one device by listype# and ident. An example of a setting to channel \$300 in station 576 would be as follows:

```
0010 size
0576 dest node
3002 setting, 2 word ident
0100 setting listype#
0002 2 bytes of data
0576 target node#
0300 channel 0300
1234 setting data value
```

In this non-server case, the dest node of the setting message must match the target node# in the ident. In the server case, the setting will be sent (as a non-server message) by the dest node to the target node.

Message type 4. Analog alarm

+	+	
message size		message size (including this word) in bytes
dest node#		node# to which this message sent.
4 0	0 0	analog alarm
channel#		analog channel# in alarm
alarm flags		flag bits. bit#8 (mask \$0100) is good/bad bit. 1=bad.
++ reading		analog reading
setting		analog setting
nomir	nal	nominal value
tole	rance	tolerance value
spare	= 	spare word
'A'	'B'	analog 6-char channel name (example name='ABCDEF')
'C'	++ 'D'	
'E'	+ 'F'	
year	 month	time of alarm detected in BCD
day	hour	
minute	 second	
cycle	0 0	
+fulls	+ scale+ ++	reading fullscale conversion constant (IEEE flt pt)
 +offset		reading offset conversion constant (IEEE flt pt)
'V'	++ '0'	engineering units text (example='VOLT')
'L'	+ 'T'	
т	+	

An analog alarm message is sent for any good/bad transition of an analog channel that is in the alarm scan (bit#15 of alarm flags word set). Examine bit#7 of the alarm flags word for a good(0) or bad(1) message. The analog alarm scan has a hysteresis to prevent chatter. Once a channel's reading has

drifted outside the tolerance window from the nominal value, and a "bad" alarm message is generated, the reading must be found within half a

before a "good" message is generated.

Inclusion of the scaling constants permits calculation of the reading in engineering units at the time the alarm (good or bad) message was generated.

The engineering units scaling is linear and uses the formula:

```
units = float(raw)*fullscale/32768. + offset
```

A specific example of an analog alarm message is:

```
002E size
00F0 group dest node
4000 analog alarm
0150 channel 0150
B000 active(8000), inhibit(2000), two-times(1000), good(0100)
C596 reading
0000 setting (motor-controlled device has no setting value)
C5BC nominal
0064 tolerance
0000 spare
4848 HHVOLT (H- preaccelerator high voltage)
564F
4C54
9208 time of alarm: 08/05/92 1648:03, cycle 14.
0516
4803
1400
44CC fullscale 1638.
C000
0000 offset 0.
0000
4B56 units text 'KV '
2020
```

The computed engineering units reading value in this case is -747.5 KV.

Message type 5. Digital alarm

```
message size (including this word) in bytes
message size
+----+
dest node# | node# to which this message sent.
5 0 | 0 0 |
                digital alarm
| bit# |
               digital bit# in alarm
alarm flags | flag bits. bit#8 (mask $0100) is good/bad bit. 1=bad.
| 'P' | 'R' |
               digital 16-char bit text (example='PREACC AIR COND ')
| 'E' | 'A' |
| 'C' | 'C' |
| ' ' | 'A' |
| 'I' | 'R' |
| ' ' | 'C'
+----+
 'O' | 'N'
| 'D' | ' ' |
| year | month |
                time of alarm detected in BCD
+----+
day hour
| minute | second |
| cycle | 0 0 |
+----+
```

A specific example of a digital alarm might be as follows:

```
0022 size
00F0 group dest node
5000 digital alarm
019C bit 019C
C100 active(8000), nominal=1(4000), bad(0100)
4354 bit text (16 chars) 'CTF NTFREQ
4620
4E54
4652
4551
2020
2020
2020
9208
     time of alarm: 08/07/92 1115:22, cycle 1.
0711
1522
0100
```

Message type 6. Comment alarm

```
message size | message size (including this word) in bytes
+----+
dest node# | node# to which this message sent.
| 6 0 | 0 0 | comment alarm
comment# | comment index# of alarm
 alarm flags | flag bits. (no good/bad bit for comments)
| 'V' | 'M' | comment 16-char text (example='VME ALARM RESET ')
| 'E' | ' ' |
'A' | 'L' |
+----+
| 'A' | 'R' |
'M' '' '
'R' | 'E'
+----+
 'S' | 'E'
'T' | ' ' |
+----+
| year | month |
               time of alarm detected in BCD
+----+
| day | hour |
| minute | second |
| cycle | 0 0 |
+----+
```

There are only two comment alarms in current use. One is the system reset message, and the other is the alarms reset message. A specific example of a comment alarm might be as follows:

```
0022 size
00F0 group dest node
6000 digital alarm
0000 comment index 0
8000 active(8000)
564D comment text (16 chars) 'VME SYSTEM RESET'
4520
5359
5354
454D
2052
4553
4554
9208 time of alarm: 08/07/92 1129:20, cycle 5.
0711
2920
0500
```